Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cell Rep ; 43(5): 114063, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38635400

RESUMO

Bacteria overcome ribosome stalling by employing translation elongation factor P (EF-P), which requires post-translational modification (PTM) for its full activity. However, EF-Ps of the PGKGP subfamily are unmodified. The mechanism behind the ability to avoid PTM while retaining active EF-P requires further examination. Here, we investigate the design principles governing the functionality of unmodified EF-Ps in Escherichia coli. We screen for naturally unmodified EF-Ps with activity in E. coli and discover that the EF-P from Rhodomicrobium vannielii rescues growth defects of a mutant lacking the modification enzyme EF-P-(R)-ß-lysine ligase. We identify amino acids in unmodified EF-P that modulate its activity. Ultimately, we find that substitution of these amino acids in other marginally active EF-Ps of the PGKGP subfamily leads to fully functional variants in E. coli. These results provide strategies to improve heterologous expression of proteins with polyproline motifs in E. coli and give insights into cellular adaptations to optimize protein synthesis.

2.
Microbiol Spectr ; : e0054424, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651876

RESUMO

Many neutralophilic bacterial species try to evade acid stress with an escape strategy, which is reflected in the increased expression of genes coding for flagellar components. Extremely acid-tolerant bacteria, such as Escherichia coli, survive the strong acid stress, e.g., in the stomach of vertebrates. Recently, we were able to show that the induction of motility genes in E. coli is strictly dependent on the degree of acid stress, i.e., they are induced under mild acid stress but not under severe acid stress. However, it was not known to what extent fine-tuned expression of motility genes is related to fitness and the ability to survive periods of acid shock. In this study, we demonstrate that the expression of FlhDC, the master regulator of flagellation, is inversely correlated with the acid shock survival of E. coli. We encountered this phenomenon when analyzing mutants from the Keio collection, in which the expression of flhDC was altered by an insertion sequence element. These results suggest a fitness trade-off between acid tolerance and motility.IMPORTANCEEscherichia coli is extremely acid-resistant, which is crucial for survival in the gastrointestinal tract of vertebrates. Recently, we systematically studied the response of E. coli to mild and severe acidic conditions using Ribo-Seq and RNA-Seq. We found that motility genes are induced at pH 5.8 but not at pH 4.4, indicating stress-dependent synthesis of flagellar components. In this study, we demonstrate that motility-activating mutations upstream of flhDC, encoding the master regulator of flagella genes, reduce the ability of E. coli to survive periods of acid shock. Furthermore, we show an inverse correlation between motility and acid survival using a chromosomal isopropyl ß-D-thio-galactopyranoside (IPTG)-inducible flhDC promoter and by sampling differentially motile subpopulations from swim agar plates. These results reveal a previously undiscovered trade-off between motility and acid tolerance and suggest a differentiation of E. coli into motile and acid-tolerant subpopulations, driven by the integration of insertion sequence elements.

3.
J Cereb Blood Flow Metab ; : 271678X241237733, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483125

RESUMO

Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.

4.
Biochemistry ; 63(5): 651-659, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38388156

RESUMO

AMPylation is a post-translational modification utilized by human and bacterial cells to modulate the activity and function of specific proteins. Major AMPylators such as human FICD and bacterial VopS have been studied extensively for their substrate and target scope in vitro. Recently, an AMP pronucleotide probe also facilitated the in situ analysis of AMPylation in living cells. Based on this technology, we here introduce a novel UMP pronucleotide probe and utilize it to profile uninfected and Vibrio parahaemolyticus infected human cells. Mass spectrometric analysis of labeled protein targets reveals an unexpected promiscuity of human nucleotide transferases with an almost identical target set of AMP- and UMPylated proteins. Vice versa, studies in cells infected by V. parahaemolyticus and its effector VopS revealed solely AMPylation of host enzymes, highlighting a so far unknown specificity of this transferase for ATP. Taken together, pronucleotide probes provide an unprecedented insight into the in situ activity profile of crucial nucleotide transferases, which can largely differ from their in vitro activity.


Assuntos
Nucleotídeos , Transferases , Humanos , Nucleotídeos/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Monofosfato de Adenosina/metabolismo , Processamento de Proteína Pós-Traducional
5.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341437

RESUMO

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Agricultura , Solo
6.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054732

RESUMO

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Fusarium , Micotoxinas , Animais , Humanos , Micotoxinas/metabolismo , Ácido Fusárico/metabolismo , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Fungos/metabolismo , Solo , Fusarium/metabolismo , Doenças das Plantas/microbiologia
7.
mSystems ; 8(6): e0103723, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909716

RESUMO

IMPORTANCE: Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Perfil de Ribossomos , Proteínas de Escherichia coli/genética , Fatores de Transcrição/genética , RNA Mensageiro/genética
8.
mBio ; 14(5): e0108923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37655896

RESUMO

IMPORTANCE: Here, we studied the LytS-type histidine kinase BtsS of E. coli and identified the pyruvate binding site within the membrane-spanning domains. It is a small cavity, and pyruvate forms interactions with the side chains of Arg72, Arg99, Cys110, and Ser113 located in transmembrane helices III, IV, and V, respectively. Our results can serve as a starting point to convert BtsS into a sensor for structurally similar ligands such as lactate, which can be used as biosensor in medicine.


Assuntos
Proteínas de Escherichia coli , Ácido Pirúvico , Ácido Pirúvico/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos , Proteínas de Bactérias/metabolismo
9.
Curr Opin Microbiol ; 75: 102367, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633223

RESUMO

Most bacteria are neutralophiles but can survive fluctuations in pH in their environment. Herein, we provide an overview of the adaptation of several human, soil, and food bacteria to acid stress, mainly based on next-generation sequencing studies, highlighting common and specific strategies. We also discuss the interplay between acid stress response and antibiotic tolerance, as well as the response of individual cells.


Assuntos
Antibacterianos , Bactérias , Humanos , Bactérias/genética , Antibacterianos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala
10.
Nat Commun ; 14(1): 4751, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550318

RESUMO

Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.


Assuntos
Quirópteros , Urbanização , Animais , Abelhas , Síndrome , Ecossistema , Biodiversidade , Aves
11.
J Bacteriol ; 205(4): e0045722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920209

RESUMO

Bacteria have evolved different systems to sense and adapt to acid stress. For example, Vibrio campbellii, a marine pathogen for invertebrates, encounters acidic conditions in the digestive glands of shrimp. The main acid resistance system of V. campbellii is the Cad system, which is activated when cells are in a low-pH, amino acid-rich environment. The Cad system consists of the pH-responsive transcriptional activator CadC, the lysine decarboxylase CadA, and the lysine/cadaverine antiporter CadB. In many Vibrio species, the LysR-type transcriptional regulator AphB is involved in the regulation of the Cad system, but its precise role is unclear. Here, we examined AphB of V. campbellii in vivo and in vitro in the context of Cad activation. At low pH, an aphB deletion mutant was less able to grow and survive compared with the wild-type because it did not excrete sufficient alkaline cadaverine to increase the extracellular pH. AphB was found to upregulate the transcription of cadC, thereby increasing its protein copy number per cell. Moreover, AphB itself was shown to be a pH-sensor, and binding to the cadC promoter increased under low pH, as shown by surface plasmon resonance spectroscopy. By monitoring the activation of the Cad system over a wide range of pH values, we found that AphB-mediated upregulation of cadC not only adjusts CadC copy numbers depending on acid stress strength, but also affects the response of individual cells and thus the degree of heterogeneous Cad system activation in the V. campbellii population. IMPORTANCE Acid resistance is an important property not only for neutralophilic enteric bacteria such as Escherichia, Yersinia, and Salmonella, but also for Vibrio. To counteract acidic threats, the marine Vibrio campbellii, a pathogen for various invertebrates, activates the acid-resistance Cad system. The transcriptional activator of the Cad system is CadC, an extracellular pH-sensor. The expression of cadC is upregulated by the transcriptional regulator AphB to achieve maximum expression of the components of the Cad system. In vitro studies demonstrate that AphB binds more tightly to the DNA under low pH. The interplay of two pH-responsive transcriptional activators allows tight control of the activity of the Cad system.


Assuntos
Transativadores , Vibrio , Transativadores/genética , Cadaverina , Fatores de Transcrição , Vibrio/genética , Vibrio/metabolismo , Proteínas de Bactérias/metabolismo
12.
bioRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711593

RESUMO

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by just-adding-water and DNA to freeze-dried crude extracts of Escherichia coli . We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a 'build-your-own' activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high school students in their classrooms - and at home - without professional laboratory equipment or researcher oversight. This work promises to catalyze access to interactive synthetic biology education opportunities.

13.
Drug Deliv Transl Res ; 13(3): 822-838, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36207657

RESUMO

Nose-to-brain delivery presents a promising alternative route compared to classical blood-brain barrier passage, especially for the delivery of high molecular weight drugs. In general, macromolecules are rapidly degraded in physiological environment. Therefore, nanoparticulate systems can be used to protect biomolecules from premature degradation. Furthermore, targeting ligands on the surface of nanoparticles are able to improve bioavailability by enhancing cellular uptake due to specific binding and longer residence time. In this work, transferrin-decorated chitosan nanoparticles are used to evaluate the passage of a model protein through the nasal epithelial barrier in vitro. It was demonstrated that strain-promoted azide-alkyne cycloaddition reaction can be utilized to attach a functional group to both transferrin and chitosan enabling a rapid covalent surface-conjugation under mild reaction conditions after chitosan nanoparticle preparation. The intactness of transferrin and its binding efficiency were confirmed via SDS-PAGE and SPR measurements. Resulting transferrin-decorated nanoparticles exhibited a size of about 110-150 nm with a positive surface potential. Nanoparticles with the highest amount of surface bound targeting ligand also displayed the highest cellular uptake into a human nasal epithelial cell line (RPMI 2650). In an air-liquid interface co-culture model with glioblastoma cells (U87), transferrin-decorated nanoparticles showed a faster passage through the epithelial cell layer as well as increased cellular uptake into glioblastoma cells. These findings demonstrate the beneficial characteristics of a specific targeting ligand. With this chemical and technological formulation concept, a variety of targeting ligands can be attached to the surface after nanoparticle formation while maintaining cargo integrity.


Assuntos
Quitosana , Glioblastoma , Nanopartículas , Humanos , Transferrina/química , Quitosana/química , Ligantes , Glioblastoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/metabolismo , Nanopartículas/química
14.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376602

RESUMO

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Assuntos
Biodiversidade , Ecossistema , Agricultura/métodos , Plantas
15.
Microorganisms ; 10(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36144354

RESUMO

Pyruvate (CH3COCOOH) is the simplest of the alpha-keto acids and is at the interface of several metabolic pathways both in prokaryotes and eukaryotes. In an amino acid-rich environment, fast-growing bacteria excrete pyruvate instead of completely metabolizing it. The role of pyruvate uptake in pathological conditions is still unclear. In this study, we identified two pyruvate-specific transporters, BtsT and CstA, in Salmonella enterica serovar Typhimurium (S. Typhimurium). Expression of btsT is induced by the histidine kinase/response regulator system BtsS/BtsR upon sensing extracellular pyruvate, whereas expression of cstA is maximal in the stationary phase. Both pyruvate transporters were found to be important for the uptake of this compound, but also for chemotaxis to pyruvate, survival under oxidative and nitrosative stress, and persistence of S. Typhimurium in response to gentamicin. Compared with the wild-type cells, the ΔbtsTΔcstA mutant has disadvantages in antibiotic persistence in macrophages, as well as in colonization and systemic infection in gnotobiotic mice. These data demonstrate the surprising complexity of the two pyruvate uptake systems in S. Typhimurium.

16.
FEMS Microbiol Rev ; 46(6)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35906711

RESUMO

The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.


Assuntos
Bactérias , Prótons , Animais , Ácidos , Adaptação Fisiológica , Membrana Celular , Concentração de Íons de Hidrogênio
17.
Chembiochem ; 23(18): e202200270, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35822398

RESUMO

mRNA methylation is an important regulator of many physiological processes in eukaryotes but has not been studied in depth in prokaryotes. Working with bacterial mRNA is challenging because it lacks a poly(A)-tail. However, methods for detecting RNA modifications, both sequencing and mass spectrometry, rely on efficient preparation of mRNA. Here, we compared size-dependent separation by electrophoresis and rRNA depletion for enrichment of Escherichia coli mRNA. The purification success was monitored by qRT-PCR and RNA sequencing. Neither method allowed complete removal of rRNA. Nevertheless, we were able to quantitatively analyze several modified nucleosides in the different RNA types. We found evidence for stress dependent RNA modification reprofiling in rRNA, but also several modified nucleosides in the mRNA enriched fractions showed significant changes.


Assuntos
Escherichia coli , RNA , Escherichia coli/genética , Nucleosídeos/química , RNA/química , RNA Mensageiro/genética , RNA Ribossômico
18.
Commun Biol ; 5(1): 327, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393532

RESUMO

The acid stress response is an important factor influencing the transmission of intestinal microbes such as the enterobacterium Escherichia coli. E. coli activates three inducible acid resistance systems - the glutamate decarboxylase, arginine decarboxylase, and lysine decarboxylase systems to counteract acid stress. Each system relies on the activity of a proton-consuming reaction catalyzed by a specific amino acid decarboxylase and a corresponding antiporter. Activation of these three systems is tightly regulated by a sophisticated interplay of membrane-integrated and soluble regulators. Using a fluorescent triple reporter strain, we quantitatively illuminated the cellular individuality during activation of each of the three acid resistance (AR) systems under consecutively increasing acid stress. Our studies highlight the advantages of E. coli in possessing three AR systems that enable division of labor in the population, which ensures survival over a wide range of low pH values.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Ácidos , Antiporters/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio
19.
Proc Natl Acad Sci U S A ; 119(10): e2118227119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238645

RESUMO

SignificanceHost-emitted stress hormones significantly influence the growth and behavior of various bacterial species; however, their cellular targets have so far remained elusive. Here, we used customized probes and quantitative proteomics to identify the target of epinephrine and the α-adrenoceptor agonist phenylephrine in live cells of the aquatic pathogen Vibrio campbellii. Consequently, we have discovered the coupling protein CheW, which is in the center of the chemotaxis signaling network, as a target of both molecules. We not only demonstrate direct ligand binding to CheW but also elucidate how this affects chemotactic control. These findings are pivotal for further research on hormone-specific effects on bacterial behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Catecolaminas/fisiologia , Fatores Quimiotáticos/fisiologia , Quimiotaxia/fisiologia , Vibrio/fisiologia , Catecóis/química , Fatores Quimiotáticos/metabolismo , Ferro/análise , Sondas Moleculares/química , Ligação Proteica , Proteômica/métodos , Transdução de Sinais
20.
ISME J ; 16(4): 1095-1109, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857933

RESUMO

A key challenge in microbiome research is to predict the functionality of microbial communities based on community membership and (meta)-genomic data. As central microbiota functions are determined by bacterial community networks, it is important to gain insight into the principles that govern bacteria-bacteria interactions. Here, we focused on the growth and metabolic interactions of the Oligo-Mouse-Microbiota (OMM12) synthetic bacterial community, which is increasingly used as a model system in gut microbiome research. Using a bottom-up approach, we uncovered the directionality of strain-strain interactions in mono- and pairwise co-culture experiments as well as in community batch culture. Metabolic network reconstruction in combination with metabolomics analysis of bacterial culture supernatants provided insights into the metabolic potential and activity of the individual community members. Thereby, we could show that the OMM12 interaction network is shaped by both exploitative and interference competition in vitro in nutrient-rich culture media and demonstrate how community structure can be shifted by changing the nutritional environment. In particular, Enterococcus faecalis KB1 was identified as an important driver of community composition by affecting the abundance of several other consortium members in vitro. As a result, this study gives fundamental insight into key drivers and mechanistic basis of the OMM12 interaction network in vitro, which serves as a knowledge base for future mechanistic in vivo studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Bactérias/metabolismo , Redes e Vias Metabólicas , Camundongos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...